Evaluating the Patient for Fusion Inhibitors

Corklin R. Steinhart, MD, PhD
Senior Attending Physician
Mercy Hospital
Miami, FL

Causes of HIV Treatment Failure

- Resistant Variants
 - Pre-existing
 - Selected
 - Transmitted
- Host Failure?
 - CD4+ function
 - CTL activity
 - Chemokines
- Persistent Viral Replication
- Evolution of Drug Resistance
- Drug Failure

- Subinhibitory Drug Levels
- Limited potency
- Incomplete adherence
- Poor absorption
- Rapid clearance
- Protein binding
- Non-activation
- Drug-Drug interactions
Prevalence of HIV Drug Resistance

Drug Resistance Detected

* Assumes no resistance in samples with HIV RNA <500 copies/mL.
** Represents 63% of total study population.

Richman DD. 41st ICAAC; 2001; Chicago, Ill.

Resistance to > 2 drug classes is a powerful risk-marker of death

Zaccarelli et al., 2nd European HIV Drug Workshop, March 11-13, 2004, Rome; Abstract 49-P4.7

P log-rank < 0.001
N = 627

Note: A switch here is defined as any change to the regimen for any reason, i.e. not only due to virological failure

“We need more drugs!”
Antiretrovirals as of May, 2004:
4 Drug Classes

NRTIs/NtRTI
AZT d4T* ddC ddI 3TC ABC TDF FTC

NNRTIs
EFV NVP DLV

Pls
SQV RTV IDV NLF APV LPV ATV FAPV

Fusion Inhibitors
ENF

*Stavudine XR: FDA Approved 12/31/02, but not yet available in pharmacies.

Targets for HIV Inhibition

Entry Inhibitors

Revers transcriptase Inhibitors

Integrate Inhibitors

Protease Inhibitors
HIV Attachment and Fusion: Targets for Inhibition

Targets for Inhibition

- CD4 Binding
- Coreceptor Binding
- Virus-Cell Fusion

Chemokine Antagonists: eg, SCH D, T-20 (Fuzeon®)

FUZEON profile

- 36-amino acid peptide
- Inhibits gp41-mediated fusion
- Administered by twice-daily subcutaneous injections
- Active against multi-drug resistant virus, regardless of co-receptor usage*

*Greenberg et al, 9th CROI, Chicago, 2001, Poster 470
TORO 1 & TORO 2: Treatment-experienced patients

- **Population:**
 - HIV infected patients with ≥3-6 months prior treatment with ≥1 NRTI, >1 NNRTI and >1-2 PI or documented viral resistance
 - HIV RNA ≥5,000 copies/mL
 - No entry CD4 criteria
- **Design:**
 - Open Label, Randomized, Multi-Center, International
- **Regimen:**
 - Optimized Background (OB)
 - 3-5 ARVs based on prior treatment history and baseline genotype and phenotype (determined prior to randomization)
 - FUZEON (90 mg sc bid) + OB
TORO 1 & TORO 2: Protocol study Design

Randomized 2:1, then start ENF+OB or OB

Screening period
Sample for GT/PT*

Stable regimen

ENF+OB
Switch permitted at virological failure** or at week 48

OB

Weeks
BL 8 16 24 48

GT = Genotypic Testing; PT = Phenotypic Testing

TORO 1 & TORO 2: BL Characteristics and Prior ARV Experience

<table>
<thead>
<tr>
<th></th>
<th>ENF+OB (N=661)</th>
<th>OB (N=334)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL RNA (median, log_{10} copies/mL)</td>
<td>5.2</td>
<td>5.1</td>
</tr>
<tr>
<td>BL CD4+ cell count (median, cells/mm^3)</td>
<td>88</td>
<td>97</td>
</tr>
<tr>
<td>Number of prior ARVs (median)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Years since initiating ARVs (median)</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Prior NRTI (median, years)</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>Prior NNRTI (median, years)</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Prior PI (median, years)</td>
<td>3.8</td>
<td>4.0</td>
</tr>
</tbody>
</table>
The treatment benefit seen at week 24 is maintained at week 48:

All comparisons ENF+OB vs. OB P<0.0001

The treatment benefit seen at week 24 is maintained at week 48:

All comparisons ENF+OB vs. OB P<0.0001
CD4+ Cell Count
Change from Baseline

<table>
<thead>
<tr>
<th>Study week</th>
<th>ENF+OB</th>
<th>OB</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>71</td>
<td>35</td>
<td><0.0001</td>
</tr>
<tr>
<td>48</td>
<td>91</td>
<td>45</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Fuzeon®
(Enfuvirtide, T-20)

What We’ve Learned During the Past Year
Diversity of the TORO Patient Population

Baseline Disease State

Baseline CD4 (cells/mm³)

- >200: 25%
- 51-200: 35%
- 0-50: 40%

Baseline Treatment Experience

- 11-13: 53%
- 5-10: 34%
- 14-16: 13%

Number of Prior ARVs
Diversity of the TORO Patient Population
Baseline Resistance (Active Drugs)

Number of ARVs with genotypic sensitivity on baseline resistance test report

Combined TORO 1 & TORO 2: Virological and Immunological Responses at Week 48 by Demographic Subgroups (Proportion of Patients with VL <400 copies/mL)

* P < .05
In Clinical Trials, the Majority of Patients Taking Fuzeon®-based Regimens Were Able to Maintain a High Level of Adherence

![Data Chart]

Analysis of Virological Response of Enfuvirtide in TORO: Implications for Patient Management*

- To explore the effect of demographic, baseline, and treatment factors on virological response after 24 weeks of treatment on enfuvirtide-containing regimens
- To formulate guidance for the best use of enfuvirtide based on the results from the TORO studies in triple class experienced patients

*Montaner et al. 2nd IAS, Paris, July 2003
Clinically Relevant Parameters for Patients Initiating Enfuvirtide (Fuzeon®) Treatment*

Disease stage

Treatment history

Activity of background regimen

Of the multiple factors in the full model, the above were considered the most relevant because they are the ones commonly used in clinical practice.

Simplified Model for Patients Initiating Fuzeon® Treatment*

<table>
<thead>
<tr>
<th>Factor</th>
<th>Odds ratio</th>
<th>95% C. I.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL CD4+ count (>100 cells/mm³)</td>
<td>2.4</td>
<td>(1.6, 3.5)</td>
<td><.0001</td>
</tr>
<tr>
<td>BL plasma HIV-1 RNA (<100K)</td>
<td>1.8</td>
<td>(1.2, 2.6)</td>
<td><.0022</td>
</tr>
<tr>
<td>Treatment history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of prior ARVs (≤10)</td>
<td>1.8</td>
<td>(1.2, 2.6)</td>
<td>0.0058</td>
</tr>
<tr>
<td>Activity of background regimen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥2 active ARVs in background</td>
<td>2.8</td>
<td>(2.0, 4.0)</td>
<td>< 1E-04</td>
</tr>
</tbody>
</table>

*HIV RNA<400 copies/ml at week 24
Conclusions

- ENF added to an OB provided significant benefit across all studied sub-groups of triple-class experienced patients in TORO 1 and TORO 2
- Greatest benefit associated with ENF:
 - CD4 ≥100 cells/mm³
 - Viral load <100,000 copies/mL
 - Up to 10 prior ARVs
 - Two or more active ARVs in background
- Patients with all 4 positive prognostic factors: 80% <400 copies/ml at week 24

“So maybe we should not wait so long to use Fuzeon®!”
“Cost” of not using Fuzeon® when switching for Virological Failure

<table>
<thead>
<tr>
<th>At least 1 active drug by genotyping</th>
<th>Number pts failing OB</th>
<th>Number losing drugs in OB at VF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>160</td>
<td>80 (50%)</td>
</tr>
</tbody>
</table>

Plasma HIV-1 RNA Change from BL

9/13/2004
Clinical Prognosis and Cost-effectiveness of Enfuvirtide (Fuzeon®) in the United States*

*Hornberger et al. 41st ICAAC, Chicago 2003

$43,607 Per QALY gained
$32,795 Per life year gained

$51,556	$154,136	$102,580		
Total	**Enfuvirtide**	**– $618**	**$18,038**	**$18,656**
OB pre-VF	$8,560	$16,248	$7,688	
OB post-VF	$42,149	$55,360	$13,211	
ADE	$18,656	$18,038	$618	
Enfuvirtide		$24,041	$24,041	
Total	$102,580	$154,136	$51,556	
Cost-effectiveness			$32,795	
Per life year gained			**$43,607**	
Per QALY gained				

Table 3. Predicted times to clinical outcomes and costs

<table>
<thead>
<tr>
<th></th>
<th>OB alone</th>
<th>ENF + OB</th>
<th>Difference (ENF + OB – OB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean time to VF (years)</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Mean time to IF (years)</td>
<td>1.3</td>
<td>2.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Overall ADE free time (years)</td>
<td>3.3</td>
<td>4.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Overall life expectancy (years)</td>
<td>4.6</td>
<td>6.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Quality adjusted life expectancy (years)</td>
<td>3.3</td>
<td>4.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Non-ARV medical costs (per year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre ADE</td>
<td>$16,364</td>
<td>$23,838</td>
<td>$7,464</td>
</tr>
<tr>
<td>Post ADE</td>
<td>$16,851</td>
<td>$16,612</td>
<td>$239</td>
</tr>
<tr>
<td>Total</td>
<td>$33,215</td>
<td>$40,440</td>
<td>$7,225</td>
</tr>
<tr>
<td>Pharmaceutical costs (per year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB pre-VF</td>
<td>$8,560</td>
<td>$16,248</td>
<td>$7,688</td>
</tr>
<tr>
<td>OB post-VF</td>
<td>$42,149</td>
<td>$55,360</td>
<td>$13,211</td>
</tr>
<tr>
<td>ADE</td>
<td>$18,656</td>
<td>$18,038</td>
<td>$618</td>
</tr>
<tr>
<td>Enfuvirtide</td>
<td></td>
<td>$24,041</td>
<td>$24,041</td>
</tr>
<tr>
<td>Total</td>
<td>$102,580</td>
<td>$154,136</td>
<td>$51,556</td>
</tr>
<tr>
<td>Mean time to IF (years)</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Mean time to VF (years)</td>
<td>1.3</td>
<td>2.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Overall ADE free time (years)</td>
<td>3.3</td>
<td>4.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Overall life expectancy (years)</td>
<td>4.6</td>
<td>6.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Quality adjusted life expectancy (years)</td>
<td>3.3</td>
<td>4.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Figure 1. Predicted times to clinical outcomes

- ENF+OB
- OB

Mean time to VF: 1.0, 0.5
Mean time to IF: 2.9, 1.3
Total time to a new ADE: 4.8, 3.3
Total life expectancy: 6.2, 4.6

ENF, enfuvirtide; OB, optimized background; VF, virological failure; IF, immunological failure; ADE, AIDS-defining event.

Figure 3. Improvements in Life Expectancy for Other Interventions in Common Diseases

- Enfuvirtide added to an optimized background regimen
- M. avium/fungal infection/CMV prophylaxis in HIV
- PCP/toxoplasmosis prophylaxis in HIV
- Chemotherapy in small-cell lung cancer
- Ticlopidine for stroke risk
- Implantable defibrillator for arrhythmia
- TPA for infarction

Gain in life expectancy (years)

PCP, Pneumocystis carinii pneumonia; TPA, tissue plasminogen activator.

*Adapted from Wright and Weinstein, 1998.
“So how do we evaluate the patient for fusion inhibitors?

Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents

March 23, 2004

It is emphasized that concepts relevant to HIV management evolve rapidly. The Panel has a mechanism to update recommendations on a regular basis, and the most recent information is available on the AIDSinfo Website: http://AIDSinfo.nih.gov
Treatment Regimen Failure: Assessment

Possible causes:
- Suboptimal adherence
- Toxicity
- Pharmacokinetics
- Suboptimal drug potency
- Viral resistance

Approach depends on cause of regimen failure and remaining antiretroviral options

Therapeutic options:
- Clarify goals: viral suppression may not be possible
- Remaining ARV options
- Base treatment choices on expected tolerability, adherence, future treatment options, past medical history, and resistance testing
Changing Therapy: Treatment Options

Extensive prior treatment:
- Avoid adding single active drug
- Seek expert advice
- If few or no treatment options, consider continuing same regimen. Other possible strategies:
 - PK enhancement
 - Therapeutic drug monitoring
 - Retreatment with prior medications
 - Multidrug regimens (limited by complexity, tolerability)
 - New ARV drugs, e.g. enfuvirtide, investigational drugs
 - Treatment interruptions not recommended

Fuzeon®
Indications

- In combination with other antiretroviral agents for the treatment of HIV-1 infection in treatment experienced patients
- Other patient types
 - Less ARV-experienced pts?
 - Patients who can’t tolerate other meds?
 - Peripheral neuropathy with nucleosides
 - GI intolerance with PIs
 - Patients with lipid issues?
Summary and Conclusions

- Fuzeon® is the first of the entry inhibitors
- Attacks the virus at a different site in its life cycle: should be effective against multi-drug resistant virus
- Post-hoc analysis of the registrational trials
 - Significantly better than OBR when there are no active drugs left
 - Works better when used earlier: lower pVL, higher CD4 counts, when fewer ARVs have been used previously, and when >2 active drugs are available
- So where exactly should it be used?

Only Time Will Tell
Thank you very much!