Pharmacokinetic interaction between etravirine and lopinavir/ritonavir in HIV-negative volunteers

Monika Schöller-Gyüre, 1 Thomas N Kakuda, 2 James Witek, 3 Andrew Clark, 4 Sophie H Akuma, 1 Goedele De Smedt,1 Kurt Spittaels,1 Katrien Janssen,1 Veerle Vyncke,1 Richard MW Hoetelmans1

¹Tibotec BVBA, Mechelen, Belgium; ²Tibotec Inc., Yardley, PA, USA; ³Tibotec Therapeutics, Bridgewater, NJ, USA; ⁴Johnson & Johnson, High Wycombe, UK

Abstract

Objectives

Etravirine (ETR; TMC125) is a next-generation NNRTI with demonstrated activity in treatment-experienced, HIV-1-infected patients. A previous interaction trial in HIV-negative volunteers demonstrated 17% increase of ETR exposure when co-administered with the soft-gel formulation of lopinavir (LPV) with low-dose ritonavir (LPV/r; RTV). This study re-evaluated the pharmacokinetics of ETR and LPV/r when LPV/r was administered as the Meltrex® formulation in HIV-negative healthy volunteers

In an open-label, randomised, two-way, two-period crossover trial, ETR 200mg bid was given for 8 days. After 14 days washout, LPV/r 400/100mg bid was administered for 16 days; ETR 200mg bid was $co-administered\ on\ days\ 9-16.\ Steady-state\ pharmacokinetics\ were\ assessed\ over\ 12\ hours\ for\ ETR,$ LPV and RTV alone and when co-administered. Pharmacokinetic (PK) parameters were obtained by noncompartmental analysis and analysed by linear mixed-effects model. Safety and tolerability were assessed.

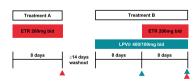
Sixteen volunteers participated (11 male/five female). PK results are given below:

ETR	Alone (mean \pm SD) (n=16)	With LPV/r (mean ± SD) (n=16)	LSM ratio (90% CI)
C _{min} (ng/mL)	451 ± 121	253 ± 84	0.55 (0.49–0.62)
C _{max} (ng/mL)	905 ± 187	643 ± 163	0.70 (0.64-0.78)
AÜC _{12h} (ng•h/mL)	8,036 ± 1,779	5,250 ± 1,416	0.65 (0.59–0.71)
LPV	Alone (mean ± SD) (n=16)	With ETR (mean ± SD) (n=16)	LSM ratio (90% CI)
C _{min} (µg/mL)	5.3 ± 1.9	4.3 ± 1.5	0.80 (0.73-0.88)
C _{max} (µg/mL)	11.2 ± 2.9	9.8 ± 1.9	0.89 (0.82-0.96)
AÜC _{12h} (μg•h/mL)	96.8 ± 21.8	84.5 ± 17.7	0.87 (0.83-0.92)
RTV			
C _{min} (ng/mL)	125 ± 72	107 ± 53	0.86 (0.76-0.97)
C _{max} (ng/mL)	845 ± 452	668 ± 341	0.81 (0.69-0.95)
AUC, (ng•h/mL)	4,415 ± 1,792	3.925 ± 1.472	0.89 (0.81-0.98)

 C_{min} = minimum plasma concentration; C_{min} = minimum plasma concentration to 12 hours after dosing

All volunteers completed the trial. The most frequent adverse event (AE) was headache in six volunteers (grade 1). One transient grade 3 increase of triglycerides was reported during co-administration, all other AEs

In contrast to the results of the study performed with the soft-gel formulation of LPV/r, co-administration of ETR with LPV/r (Meltrex®) resulted in a 30–45% decrease in ETR PK parameters. The decrease of LPV and RTV PK parameters by 11–20% when combined with ETR is similar to earlier reported data and is not considered clinically relevant. Given that the effect of LPV/r on ETR pharmacokinetics is comparable to the effect of darunavir/RTV (DRV/r) on ETR pharmacokinetics shown in previous trials, which demonstrated favourable ETR efficacy and safety, ETR and LPV/r can be co-administered without dose adjustments.


Introduction

- ETR is a next-generation NNRTI with potent activity against both wild-type HIV-1 and HIV-1 resistant to first-generation NNRTIs¹
- Two Phase III this (DUET-1 and DUET-2) demonstrated significant antiviral benefit over 96 weeks of treatment with ETR in treatment-experienced patients with resistance to first-generation NNTRI. Except for a higher incidence of rash, patients treated with ETR had an AE profile similar to placebo^{L-4}
- ETR is predominantly metabolised by the cytochrome P450 (CYP) enzymes 3A, 2C9 and 2C19, followed by glucuronidation; it is an inducer of CYP3A4 and an inhibitor of CYP2C9, CYP2C19 and Pglycoprotein
- The protease inhibitor LPV/r is indicated for the treatment of HIV-1 infection LPV/r is an inducer of CYP1A2, CYP2C9, CYP2C19 and an inhibitor of CYP3A5
- A previous interaction trial in HIV-negative volunteers demonstrated increased ETR exposure when an earlier formulation of ETR was co-administered with the soft-gel formulation of LPV/r⁰
- This trial re-evaluated the PK interaction between ETR and LPV/r using the current formulation for both drugs (i.e. ETR spray-dried formulation and LPV/r produced by melt extrusion technology)

Study design

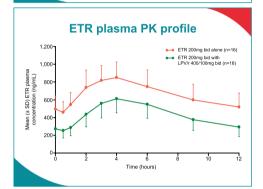
- TMC125-C197 was a Phase I, open-label, two-way, two-period, randomised crossover trial in 16 HIV-negative volunteers
- Two treatment sessions (A and B) were scheduled for all volunteers, separated by a washout period of at least 14 days, as shown in the study design scheme. Half of the volunteers were randomised to start with Treatment A and half were randomised to
- ETR was administered as 200mg bid; all doses were taken within 10 minutes after breakfast and dinner
- LPV/r was administered as 400/100mg bid of the Meltrex® formulation, within 10 minutes after breakfast and dinner
- Post-treatment safety visits took place 7 and 31 (±1) days after the last intake of trial medication
- The trial protocol was reviewed and approved by the appropriate institutional ethics committee and health authorities; the trial was conducted in accordance with the Declaration of Helsinki

Study design (cont'd)

Safety and tolerability assessments were performed throughout the trial until at least 30 days after the last trial medication intake

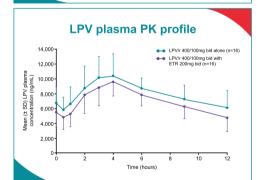
PK analyses

- · Plasma concentrations of ETR were determined using a validated LC-MS/MS method (LLOQ 2ng/mL)
- Plasma concentrations of LPV and RTV were determined using a validated LC-MS/MS method (LLOQ 10ng/mL and 5ng/mL, respectively)
- · A non-compartmental model with extravascular input was used
- PK and statistical PK analyses were performed using WinNonlin Professional™ (version 4.1, Pharsight Corporation, Mountain View, California, USA) and SAS System for Windows® version 9.1.3 (SAS Institute Inc., Cary NC 27512-8000, USA)

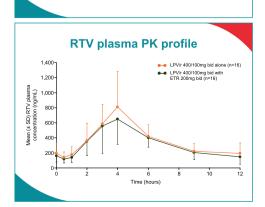

LC-MS/MS = liquid chromatography-tandem mass spectrometry LLOQ = lower limit of quantification

PK and safety parameters and statistical analyses

- C_{min} (ng/mL) C_{max} (ng/mL) AUC_{12h} (ng•h/mL)
- Safety parameters
- AEs, laboratory assessments, electrocardiogram, vital signs assessment physical examinations were evaluated throughout the study severity and drug relationship of AEs to ETR, LPV and/or RTV were recorded
- Statistical analyses
- descriptive statistics were calculated for the PK parameters of ETR, LPV and RTV
- LSM ratios and 90% CIs were estimated with a linear mixed-effects model safety parameters were evaluated by descriptive statistics and frequency


Demographics

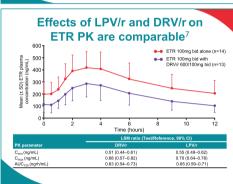
Demographic parameter	All volunteers (n=16)
Age, years, median (range)	45 (20-53)
Height, cm, median (range)	175 (158-193)
Weight, kg, median (range)	70 (53-94)
Body mass index, kg/m², median (range)	23 (19-29)
Gender, n (%) Male Female	11 (69) 5 (31)
Ethnic origin, n (%) Caucasian	16 (100)

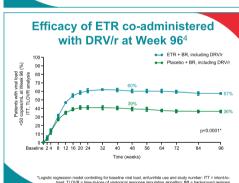

ETR PK parameters

PK parameter	ETR alone (Reference) (mean ± SD) (n=16)	ETR + LPV/r (Test) (mean ± SD) (n=16)	LSM ratio (Test/Reference) (90% CI)
C _{min} (ng/mL)	451 ± 121	253 ± 84	0.55 (0.49-0.62)
C _{max} (ng/mL)	905 ± 187	643 ± 163	0.70 (0.64-0.78)
AUC _{12h} (ng•h/mL)	8,036 ± 1,779	5,250 ± 1,416	0.65 (0.59-0.71)

LPV PK parameters

PK parameter	LPV alone (Reference) (mean ± SD) (n=16)	LPV + ETR (Test) (mean ± SD) (n=16)	LSM ratio (Test/Reference) (90% CI)
C _{min} (ng/mL)	5,333 ± 1,850	4,322 ± 1,527	0.80 (0.73-0.88)
C _{max} (ng/mL)	11,170 ± 2,909	9,792 ± 1,906	0.89 (0.82-0.96)
AUC _{12b} (ng•h/mL)	96,790 ± 21,790	84,520 ± 17,710	0.87 (0.83-0.92)




RTV PK parameters

PK parameter	RTV alone (Reference) (mean ± SD) (n=16)	RTV + ETR (Test) (mean ± SD) (n=16)	LSM ratio (Test/Reference) (90% CI)
C _{min} (ng/mL)	125 ± 72	107 ± 53	0.86 (0.76-0.97)
C _{max} (ng/mL)	845 ± 452	668 ± 341	0.81 (0.69-0.95)
AUC _{12h} (ng•h/mL)	4,415 ± 1,792	3,925 ± 1,472	0.89 (0.81-0.98)

Safety summary

- No serious AEs were reported
- · None of the volunteers discontinued the trial
- The most frequently reported AE was headache (six volunteers)
- . All AEs reported during the treatment periods were mild (grade 1) All ALs reported during the treatment periods were mild (grade 1) or moderate (grade 2) in severity except for a grade 3 increase of triglycerides during co-administration of ETR and LPV/r; two other grade 3 laboratory abnormalities were observed during the co-administration phase (increase of total cholesterol and low-density lipoprotein)
- There were no consistent or relevant changes in laboratory or cardiovascular safety parameters or physical examinations

Conclusions

- ETR had no clinically relevant effect on the pharmacokinetics of LPV
- When co-administered with the Meltrex® formulation of LPV/r, ETR PK parameters decreased by 30-45%
- The effect of the Meltrex® formulation of LPV/r on ETR is comparable to that seen with DRV/r7
- efficacy and safety of ETR in the presence of DRV/r was demonstrated in DUET-1 and DUET-24 up to 96 weeks
- Co-administration of ETR and LPV/r was generally safe and well tolerated
- ETR can be co-administered with LPV/r without dose adjustments

References

- 1. Vingerhoets J, et al. J Virol 2005;79:12773–82.
- 2. Madruga JV, et al. Lancet 2007;370:29–38. 3. Lazzarin A, et al. Lancet 2007;370:39–48.
- 4. Mills A, et al. IAS 2009. Abstract MOPEB036.
- 5. Yeh RF, et al. JAIDS 2006:42:52-60.
- 6. Piscitelli S, et al. ICAAC 2002. Abstract A-1824.
- 7. Schöller-Gyüre M, et al. Antiviral Ther 2007:12:789-96.

Acknowledgements and disclosures

- The authors would like to express their gratitude to the volunteers. We also acknowledge
- V Hillewaert, J&J Pharmaceutical Research and Development, Beerse, Belgium - D Mazur, Institut fur Klinische Pharmakologie, Parexel, Berlin, Germany
- Editorial support was provided by Gardiner-Caldwell Communications, Macclesfield, UK; this support was funded
- MSG, TNK, JW, SHA, GDS, KS, KJ, VV and RMWH are full-time employees of Tibotec. AC is a full-time employee