Johan Vingerhoets **Tibotec BVBA** Generaal de Wittelaan L11 B3 B2800, Mechelen Belgium jvingerh@its.jnj.com

Activity of etravirine on different HIV-1 subtypes: Week 48 data of the pooled DUET trials and in-vitro susceptibility in treatment-naïve patients

Johan Vingerhoets,¹ Hilde Azijn,¹ Lotke Tambuyzer,¹ Inge Dierynck,¹ Sandra De Meyer,¹ Laurence Rimsky,¹ Monika Peeters,¹ Goedele De Smedt,¹ Marie-Pierre de Béthune,¹ Gaston Picchio² ¹Tibotec BVBA, Mechelen, Belgium; ²Tibotec Inc., Yardley, PA, USA

Abstract

Etravirine (ETR; TMC125) has shown good in-vitro activity against primary HIV-1 group M isolates from different subtypes and has demonstrated durable efficacy in treatmentexperienced, HIV-1-infected patients in the Phase III DUET trials. In-vivo efficacy and in-vitro activity of ETR against different HIV-1 subtypes was further investigated.

DUET patients were randomised 1:1 to ETR (200mg bid) or placebo, both with a background regimen (BR) of NRTIs, darunavir (DRV) with low-dose ritonavir (DRV/r) and optional enfuvirtide (ENF). Subgroup analyses of the effect of HIV-1 subtype on the proportion of patients with viral load <50 HIV-1 RNA copies/mL (time-to-loss of virological response [TLOVR] imputation algorithm) were conducted on pooled Week 48 data. Genotype/subtype and phenotype determinations were performed using the virco®TYPE HIV-1 and Antivirogram[™] assays, respectively. The effect of HIV-1 subtype on ETR fold-change in EC_{so} (FC) value was analysed in HIV-1 recombinant clinical isolates from treatment-naïve patients enrolled in other Tibotec trials (n=872) that included 49% of HIV-1 subtype non-B (18% CRF01_AE; 16% C; 5% A1; 3% CRF12_BF; 2% CRF02_AG; 1% F1; 3% other).

In DUET, HIV-1 subtype was available for 594 and 595 patients in the ETR and placebo arms, respectively. The majority of these (93.8%) harboured HIV-1 subtype B. Among the non-B subtypes, CRF12_BF (2.1%), F1 (1.2%), and CRF02_AG (0.8%) were most prevalent. Baseline disease characteristics (viral load, CD4, ETR FC, DRV FC, phenotypic sensitivity score [PSS]) were similar between patients with different subtypes, except for a higher number of sensitive NRTIs used in those with HIV-1 subtype non-B. In the ETR arm, virological responses at Week 48 were 59.9% (336/561) for HIV-1 subtype B vs 72.7% (24/33) for all other HIV-1 subtype non-B, as compared to an overall response of 60.6%

These data were further supported by in-vitro results that indicated a comparable median (interquartile range) ETR FC in virus isolates from treatment-naïve patients infected with subtype B or non-B (1.1, 0.8-1.6 or 1.2, 0.8-1.7), respectively.

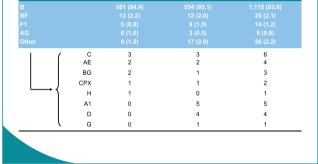
In the DUET studies, ETR was equally effective in suppressing viral replication in patients infected with HIV-1 subtype B or non-B. Furthermore, both subtype B and non-B HIV-1 recombinant clinical isolates from treatment-naïve patients exhibited comparable levels of in-vitro phenotypic susceptibility to ETR. These results confirmed the broad activity of ETR against HIV-1

Data have been updated since abstract submission.

Background

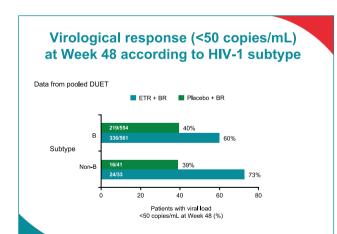
- ETR is a next-generation NNRTI, with activity against NNRTI-resistant HIV-1 and a high genetic barrier to the development of resistance¹
- ETR has shown good in-vitro activity against primary HIV-1 group M and group O isolates from different subtypes1 and has demonstrated durable efficacy in treatment-experienced, HIV-1-infected patients in the Phase III DUET trials^{2,3}

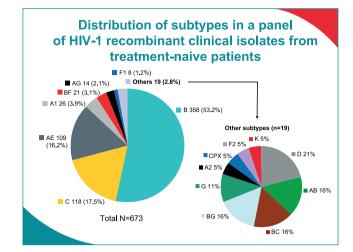
ndries K, et al. Antimicrob Agents Chemother 2004;48:4680–86 ²Trottier B, et al. CAHR 2008. Poster P167 ³De Smedt G, et al. ISHEID 2008. Oral presentation

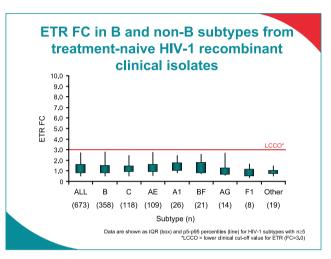

Objectives

- To investigate the virological response to ETR in DUET in patients infected with different HIV-1 subtypes
- To investigate the in-vitro activity of ETR in wild-type HIV-1 recombinant clinical isolates from treatment-naïve patients
 - genotypic variation due to HIV-1 subtype can be studied without the interference of resistance associated mutations
 - phenotypic clinical cut-off (CCO) values were defined previously1 and can be applied to estimate the antiviral activity of ETR

Methods

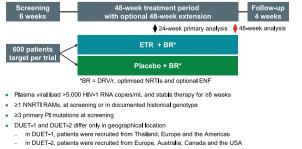

- Subgroup analyses of the effect of HIV-1 subtype on the proportion of patients with viral load <50 HIV-1 RNA copies/mL (TLOVR imputation algorithm) were conducted on pooled Week 48 DUET
- Genotype and phenotype were determined by Virco HIV-1 subtype was determined by Virco as the best match between the protease/RT nucleotide sequence and the corresponding subtype consensus sequences from the LANL subtype reference subset¹
- The effect of HIV-1 subtype on ETR FC was analysed in a panel of HIV-1 recombinant clinical isolates (n=673) from treatment-naïve patients enrolled in other Tibotec-
- sponsored trials no evidence of transmitted NRTI resistance or evidence of NNRTI resistance²
 - ¹http://hiv.lanl.gov; ²Tambuyzer L, et al. EHDRW 2007 RT = reverse transcriptase



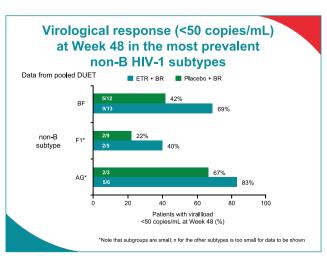


Baseline disease characteristics by **HIV-1** subtype in pooled DUET

	ETR + BR		Placebo + BR	
	Subtype B (N=561)	Non-B (N=33)	Subtype B (N=554)	Non-B (N=41)
Median log ₁₀ viral load, copies/mL	4.8	5.0	4.8	4.9
Median CD4 ⁺ cell count, cells/mm ³	100	79	109	81
Median ETR FC	1.7	1.5	1.5	1.9
Median DRV FC	6.5	4.3	6.6	4.9
De-novo use of ENF, %	25.1	33.3	26.9	24.4
≥1 sensitive NRTIs in BR, %	45.2	63.6	43.6	65.0
PSS, % 0	17.4	9.1	16.8	12.5
	37.2	21.2	39.4	27.5
≥2	45.4	69.7	53.8	60.0



Conclusions


- In DUET, baseline disease characteristics (viral load, CD4, ETR FC, DRV FC) were similar between patients infected with different subtypes, except for a higher number of sensitive NRTIs used in those with HIV-1 subtype non-B
- ETR was equally effective in suppressing viral replication in patients infected with HIV-1 subtype B or various HIV-1 non-B subtypes
- the additional effect of ETR on virological response as compared to placebo was similar in patients infected with HIV-1 subtype B or various HIV-1 non-B subtypes
- Further investigations were performed using HIV-1 recombinant clinical isolates from treatment-naïve patients infected with various HIV-1 subtypes
 - comparable median ETR FC values were

DUET study design and major inclusion criteria

- Pooled analysis was prespecified

RAMs = resistance-associated mutations: PI = protease inhibitor

observed irrespective of HIV-1 subtype

 These data confirm the activity of ETR against a broad range of HIV-1 subtypes

Acknowledgements

- The authors would like to express their gratitude to
 - the patients and their families
 - the investigators
- the study centre staff
- Virco
- Tibotec clinical trial staff
- Tibotec Clinical Virology and Biometrics

Supported by Tibotec

Presented at the 9th International Congress on Drug Therapy in HIV Infection, Glasgow, UK, 9–13 November 2008

This poster is available on-line at www.tibotec.com