0413

Pharmacokinetics of Once-Daily Etravirine (ETR) Without and With Once-Daily Darunavir/ Ritonavir (DRV/r) in Antiretroviral-Naïve HIV-1 Infected Adults

Jacob Lalezari, MD **Quest Clinical Research** 2300 Sutter Street, Suite 202 San Francisco, California USA Email: drjay@questclinical.com

Jacob Lalezari¹, Edwin DeJesus², Olayemi Osiyemi³, Peter Ruane⁴, Zachary Haigney¹, Robert Ryan⁵, Bryan Polsonetti⁶, Thomas N Kakuda⁵, James Witek⁶ Quest Clinical Research, San Francisco, CA, US; 2 Orlando Immunology Center, Orlando, FL, USA; 3 Triple O Medical Services, Inc , West Palm Beach, FL, USA; 4 Light Source Medical, Los Angeles, CA, USA; ⁵Tibotec, Inc., Yardley, PA, USA; ⁶Tibotec Therapeutics, Bridgewater, NJ, USA

Introduction

- With a terminal half-life of 30-40 hours, and formulation improvements leading to a reduced pill burden, etravirine (INTELENCE™; ETR) is a candidate for once daily (qd) dosing
- In previous studies in healthy volunteers
- ETR AUC was similar, C_{max} was 44% higher and C_{min} was 25% lower for qd versus twice daily (bid) dosing (Figure 1)1
- Co-administration of darunavir (PREZISTA™; DRV) with low-dose ritonavir (RTV; /r) 600/100mg bid decreased AUC of ETR 100mg bid by 37%²
- Once-daily DRV/r has been shown to be effective and well-tolerated in antiretroviral (ARV)-naïve patients³
- This multicenter, open-label phase IIa trial (TMC125-HIV2032) evaluated pharmacokinetic (PK) and short-term safety and efficacy of ETR 400mg qd plus tenofovir/emtricitabine (TDF/FTC) 300/200mg qd without and then with DRV/r 800/100mg qd in ARV-naïve, HIV-1-infected patients

Methods

- In this phase IIa open label, single arm study, 23 patients enrolled and 20 completed through Day 42
- Key eligibility criteria
- ARV-naïve adults with HIV-1
- No evidence of resistance to study drug based on screening or historical resistance assays (presence of <3 ETR resistance-associated mutations [list of 13 RAMs] defined susceptibility to ETR)
- HBV/HCV co-infection not allowed
- Intensive PK sampling was performed over 24 hours on Day 14 for ETR, and Day 28 for ETR, DRV and RTV (Figure 2)
- All doses were administered following a meal
- PK parameters were determined using a noncompartmental model with extravascular input and evaluated by least squares mean (LSM) ratios with 90% confidence interval (CI)
- Patients were offered a 42-week open-label extension with DRV/r 800/100mg qd plus TDF/ FTC 300/200mg qd

Table 1. Patient baseline demographics and disease characteristics

Figure 3. Plasma concentration-time profile of ETR 400mg qd

• There was no change in ETR PK following co-administration of DRV/r 800/100mg qd (Figure 3 and Table 2)

• In general, ETR C_{max} was higher, C_{min} was lower, and AUC was similar when comparing qd dosing in the current study to bid dosing in treatment-experienced patients (reference: DUET PK sub-study; n=24)4 (Table 3)

- Evaluations were at Week 4 in DUET versus Day 14 for current study

 In DUET-1 and DUET-2, all patients were treatment-experienced and received DRV/r 600/100ma bid

Table 3. ETR PK in HIV-infected patients: qd and bid

	QD PK Study (Current Study)	HISTORICAL REFERENCE ¹ (DUET PK Sub-study)
Parameter Median (range)	ETR 400mg qd Day 14 (n=21)	ETR 200mg bid Week 4 (n = 25)
C _{oh} , ng/mL	224 (58–503)	260 (110-3,960)
C _{min} , ng/mL	197 (58-480)	195 (109-3,900)
C _{max} , ng/mL	765 (254–1,410)	525 (285-4,980)
t _{max} , h	4 (26)	4 (0-6)
AUC _{12h} , ng•h/mL	_	4,307 (2,284–53,870)
AUC _{24h} , ng•h/mL	9,778 (3,364-18,650)	_

• DRV PK was slightly higher and RTV PK was lower when compared to historical controls (ARTEMIS week 4 PK substudy) (Figure 4a and 4b, and Table 4)

 The mean viral load (VL) decline was 1.7 log₁₀ copies/mL at Day 14, 1.8 log₁₀ at Day 28 and 2.0 log₁₀ copies/mL at Day 42 (Figure 5)

Figure 5. Short-term virologic response

- The median increase in CD4 cell count was 56 cells/mm³ at Day 42 (n=19)
- Most common treatment-emergent AEs were nausea, headache, rash, and flatulence (Table 5)
- Of the 3 cases of rash, none were considered serious or were grade 3 or 4
- No serious or grade 3 or 4 AEs were reported
- No AEs led to discontinuation
- There were no grade 3 or 4 AST, ALT or lipid elevations
- One case of grade 3 neutropenia was reported during Treatment A

Table 5. Adverse events

Parameter, n (%)	N=23
Serious adverse events	0
Grade 3/4 clinical adverse events	0
Adverse events leading to discontinuation	0
Adverse events at least possibly related to study drug, $\geq 5\%^{a}$	
Related to ETR	
Nausea	4 (17.4)
Headache	3 (13.0)
Flatulence	2 (8.7)
Rash	2 (8.7)
Related to DRV	
Nausea	3 (13.0)
Rash	2 (8.7)
Any grade individual advarge quests could be accigned dual causality by investigator	

dual adverse events could be assigned dual causality by investigate

• The impact on metabolic parameters was small when ETR was given with or without DRV/r (Table 6)

Table 6. Change in metabolic parameters and laboratory abnormalities

		Median (range) change from BL		
		Day 14 (A) (n=21)ª	Day 28 (B) (n=21) ^b	Day 42 (C) (n=20) ^c
Parameter, Median (range)	Baseline (n=23)	ETR + TDF/ FTC	ETR + TDF/FTC + DRV/r	DRV/r + TDF/FTC
Triglycerides,				
mmol/L	0.79 (0.40, 2.81)	0.01 (-1.40, 1.16)	0.27 (-0.90, 1.17)	0.37 (-0.99, 1.87)
mg/dL	70 (35, 249)	1 (-124, 103)	24 (-80, 104)	33 (-88, 166)
Total cholesterol,				
mmol/L	3.75 (2.84, 5.74)	-0.08 (-1.16, 1.14)	0.03 (-1.32, 1.22)	0.28 (-1.66, 1.50)
mg/dL	145 (110, 222)	-3 (-45, 44)	1 (-51, 47)	11 (-64, 58)
Direct LDL cholesterol,				
mmol/L	2.38 (1.53, 3.59)	-0.21 (-1.11, 0.75)	-0.16 (-0.93, 0.83)	0.04 (-1.01, 1.27)
mg/dL	92 (59, 139)	-8.0 (-43, 29)	-6.0 (-36, 32)	1.5 (-39, 49)
HDL cholesterol,				
mmol/L	1.06 (0.78, 1.55)	0 (-0.31, 0.44)	-0.05 (-0.67, 0.36)	-0.03 (-0.78, 0.21)
mg/dL	41 (30, 60)	0 (-12, 17)	-2 (-26, 14)	-1 (-30, 8)
TC/HDL ratio	3.67 (2.20, 4.95)	-0.05 (-1.00, 0.72)	0.10 (-0.58, 4.82)	0.36 (-0.38, 7.65)
Glucose,				
mmol/L	5.05 (4.16, 5.94)	-0.11 (-2.00, 2.33)	-0.11 (-1.72, 0.67)	-0.08 (-1.22, 2.39)
mg/dL	91 (75, 107)	-2 (-36, 42)	-2 (-31, 12)	-2 (-22, 43)
Insulin/U/mL	5 (1.9, 23.0)	-0.8 (-13.3, 11.3)	0 (-16.0, 20.0)	0 (-10.0, 32.2)
LDL low-density linoprotein: HDL high-density linoprotein: TC total cholecterol				

^an=20 for trilycerides; ^bn=20 for HDL cholesterol, direct LDL cholesterol, total cholesterol, total cholesterol/HDL and

n=19 for triglycerides; cn=19 for insulin

Conclusions

- Addition of once-daily DRV/r to once-daily ETR did not have a clinically significant impact on ETR pharmacokinetics
- In general, C_{max} was higher, C_{min} was lower and AUC was similar for once-daily ETR in treatment-naïve patients relative to twice-daily ETR in treatment-experienced patients (historical reference)
- Mean C_{min} for ETR dosed once-daily was >50-fold higher than the protein binding-adjusted EC_{50} for wild-type HIV, with and without co-administration of DRV/r ad

l'alameter	N=25
Baseline demographics	
Age, mean (SD), years	35.7 (13.6)
Male, n (%)	20 (87)
Race/ethnicity, n (%)	
Black	9 (39)
Caucasian	9 (39)
Hispanic	5 (22)
Disease characteristics	
Baseline viral load, mean (SD), log ₁₀ copies/mL	4.2 (0.75)
Baseline CD4 count, median (range), cells/mm ³	403 (144-895)
ETR fold change ^a ≤1.6, n (%)	22 (95.7) ^b
DRV fold changeª ≤10, n (%)	23 (100)

Predicted fold change in EC₅₀ according to VircoTYPE; fold change values were not available for ETR at time of screening ^b1 subject had ETR fold change of 2.5

ARTEMIS PK substudy (Week 4): SD, standard deviation: WT, wild-type

Figure 4. Plasma concentration-time profile of (a) DRV (DRV/r 800/100mg qd) and (b) RTV (100mg qd) compared to historical controls

Table 4. Pharmacokinetic parameters of DRV and RTV on Day 28

Parameter Mean (SD); t _{max} median (range)	DRV (n = 20)	RTV (n = 20)
C _{oh} , ng/mL	1,335 (867)	53 (70)
C _{min} , ng/mL	1,049 (616)	27 (21)
C _{max} , ng/mL	7,008 (1,514)	465 (231)
t _{max} , h	4 (2-6)	6 (2-9)
AUC _{24h} , ng•h/mL	76,130 (22,080) ^a	4,128 (1,854)ª
^a n = 19		

- No relationship between PK and efficacy or safety was observed in the DUET studies
- Once daily ETR was associated with good short term safety and minimal impact on metabolic parameters
- PK data combined with short-term safety and efficacy support further clinical investigation of ETR 400 mg qd in HIV-1 infected patients

References

1. Peeters M, et al. Ann Pharmacother 2008; 42:757–65. 2. Scholler-Gyure M, et al. Antivir Ther 2007; 12(5):789–96. 3. Ortiz R, et al. AI/DS 2008; 22:1389–13972. 4. Kakuda TN, et al. IVAC 2008; Abstract P34. 5. Delesus E, et al. ICAAC 2007. Abstract H-718b. 6. Data on file.

Acknowledgments

- The authors would like to express their gratitude to
 The patients and their families
 The investigators and trial site personnel
 Vera Hilleware (1/3) PRO) for bioanalysis of ETR, DRV and RTV plasma concentrations
 Kinesis Pharma (Breda, The Netherlands) for analysis of pharmacokinetic data

Presented at the Ninth International Congress on Drug Therapy in HIV Infection (HIV9); November 9–13, 2008; Glasgow, UK