### Poster No. 1059

# Pharmacokinetic interaction between TMCI25 and rifabutin

M Schöller-Gyüre,' B Woodfall,' C Debroye,' T De Marez,<sup>2</sup> M Peeters,' K Vandermeulen,' R Hoetelmans' 'Tibotec BVBA, Mechelen, Belgium; 'Tibotec Inc., Yardley, USA

## Abstract

#### Background

TMC125 is an NNRTI with potent activity against both wild-type HIV and viruses resistant to currently approved NNRTIs. TMC125 and rifabutin are substrates and inducers of CYP3A4. To support concomitant administration, an interaction study was conducted.

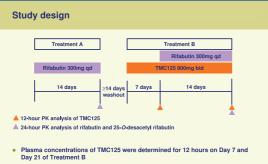
#### Methods

TMCI25-CI56 was an open-label, randomized, two-period, crossover trial. In Treatment A, 300mg rifabutin qd was administered for 14 days. After a washout period of 14 days, 800mg TMC125 bid (Phase II formulation) was given for 21 days, co-administered with 300mg rifabutin gd on Days 8–21 (Treatment B). The 12-hour pharmacokinetic (PK) profile of TMC125 was assessed on Day 7 and Day 21 of Treatment B. The 24-hour PK profiles of rifabutin and its active metabolite 25-O-desacetyl rifabutin were determined on Day 14 of Treatment A and Day 21 of Treatment B. PK parameters were analyzed using a linear mixed effect model for crossover design. Safety and tolerability were assessed.

#### Results

Sixteen HIV-negative volunteers (15 male, median age 34 years) participated. When combined with rifabutin, TMC125 AUC<sub>12b</sub> was 63% (90% CI: 54–74%) compared with administration of TMC125 alone. TMC125 C<sub>max</sub> and C<sub>min</sub> were 63% (90% CI: 53-74%) and 65% (90% CI: 56-74%), respectively. AUC<sub>24b</sub>,  $C_{max}$  and  $C_{min}$  of rifabutin were 83% (90%) CI: 75–94%), 90% (90% CI: 78–103%) and 76% (90% CI: 66-87%), respectively, when combined with TMC125 compared with administration alone. AUC<sub>24</sub>, C<sub>max</sub> and C<sub>min</sub> of 25-0-desacetyl rifabutin were 83% (90% CI: 74-92%), 85% (90% CI: 72-100%) and 78% (90% CI: 70-87%), respectively, when given in combination with TMC125. The short-term co-administration of TMC125 and rifabutin was generally safe and well tolerated.

#### Conclusions


The decrease of rifabutin and 25-O-desacetyl rifabutin exposures by 17% is not clinically relevant. The decrease in TMC125 exposure by 37% is comparable with interactions observed with boosted Pls in Phase II trials. Rifabutin can be combined with TMCI25 without dose adjustments. The effect of all co-administered drugs should be taken into account.

#### Introduction

- TMC125 is a next generation NNRTI with potent in-vitro activity against both wild-type HIV-1 and HIV-1 resistant to current NNRTIs<sup>1</sup> A Phase Ib trial (TMC125-C223) in treatment-experienced HIV patients
- onstrated that TMC125, with an optimized background regimen. reduced viral load at 48 weeks significantly more than active control. No dose-related effects on safety and tolerability were noted<sup>2,3</sup>
- TMC125 is predominantly metabolized by CYP3A4, CYP2C and tion; it is an inducer of CYP3A4 and an inhibitor of CYP2C
- Rifabutin is indicated for the prevention of Mycobacterium avium complex disease in patients with advanced HIV infection
- Rifabutin is converted by CYP3A4 to its active metabolite 25-O-desacetyl rifabutin and is an inducer of the CYP3A sub-family<sup>4</sup>
- To support concomitant administration, an interaction study with utin and TMC125 (Phase || formulation) was conducted

#### Study design

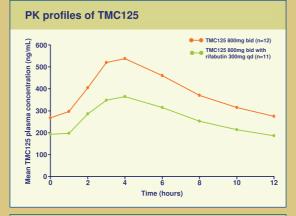
- TMC125-C156 was a Phase I, open-label, two-way, two-period, crossover trial in 16 HIV-negative volunteers
- Two treatment sessions (A and B) were scheduled for all volunteers, separated by a washout period of at least 14 days. Half of the volunteers were randomized to start with Treatment A and half were randomized to start with Treatment B
- All doses were taken concomitantly within 10 minutes after a
- Post-treatment safety visits took place 7 days and 31 (±1) days after the last intake of trial medication
- The study protocol was reviewed and approved by the appropriate institutional ethics committee and health authorities, and was conducted in accordance with the Declaration of

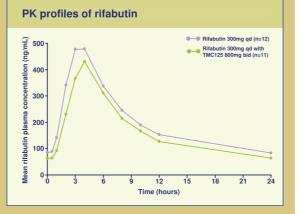


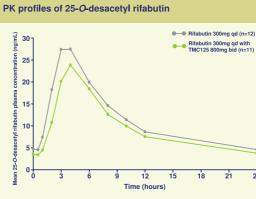
- Plasma concentrations of rifabutin and 25-O-desacetyl rifabutin were determined for 24 hours on Day 14 of Treatment A and Day 21 of Treatment B
- Safety and tolerability assessments were performed throughout the trial until at least 30 days after the last trial medication intake

- Methods
- Plasma concentrations of TMC125, rifabutin and 25-O-desacetyl. rifabutin were determined using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods (LLOQ 2ng/mL for all compounds
- PK and statistical PK analyses were performed using WinNonlin Professional<sup>™</sup> (Pharsight Corporation, Mountain
- View, CA, USA) Microsoft Excel<sup>®</sup> (version 2000; Microsoft, Redmond, WA,
- LISA)
- A non-compartmental model with extravascular input was used for the PK analysis

#### LLOQ = lower limit of quantificatio


#### PK and safety parameters and analyses


- Primary PK parameters
  C<sub>max</sub> (ng/mL): maximum plasma concentration C<sub>min</sub> (ng/mL): minimum plasma concentration
- AUC, 22 and AUC, 24 (no. 1/2). area under the plasma concentration-time curve over a 12- and 24-hour period, respectively, calculated by
- linear trapezoidal s
- Safety parameters
- adverse events (AEs), laboratory assessments, ECG, vital signs and physical examinations were evaluated throughout the study severity and drug relationship of AEs to rifabutin or TMC125 were
- Statistical analyses descriptive statistics were calculated for the PK parameters of TMC125, rifabutin and 25-O-desacetyl rifabutin
- least square (LS) means were estimated with a linear mixed effects
- safety parameters were evaluated by descriptive statistics and frequency tabulations


#### **Demographics**

| Demographic parameter                                        | All volunteers<br>(N=16)*  |
|--------------------------------------------------------------|----------------------------|
| Age, years (median [range])                                  | 34 (22-55)                 |
| Height, cm (median [range])                                  | 170 (155–191)              |
| Weight, kg (median [range])                                  | 71 (56–103)                |
| BMI, kg/m <sup>2</sup> (median [range])                      | 25 (22-28)                 |
| Ethnic origin, n (%)<br>Caucasian/White<br>Black<br>Hispanic | 8 (50)<br>4 (25)<br>4 (25) |
| Gender, n (%)<br>Male<br>Female                              | 15 (94)<br>1 (6)           |

\*Ten volunteers completed the trial (four volunteer withdrew consent and two were withdrawn due to AEs) BM = body mass index







#### TMC125 PK parameters (mean ± SD)

| PK parameter                 | TMC125<br>alone<br>(reference)<br>(n=12) | TMC125<br>+ rifabutin<br>(test)<br>(n=11) | LS mean ratio<br>(test/reference<br>(90% CI) |
|------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------|
| AUC <sub>12h</sub> (ng•h/mL) | 4,722±1,949                              | 3,220±2,196                               | 0.63 (0.54–0.74                              |
| C <sub>max</sub> (ng/mL)     | 547±234                                  | 371±259                                   | 0.63 (0.53–0.74                              |
| C <sub>min</sub> (ng/mL)     | 257±118                                  | 178±129                                   | 0.65 (0.56-0.74                              |

#### SD = standard deviation

#### Rifabutin PK parameters (mean ± SD)

| PK parameter                 | Rifabutin<br>alone<br>(reference)<br>(n=12) | Rifabutin<br>+ TMC125<br>(test)<br>(n=11) | LS mean<br>(test/refe<br>(90%) |
|------------------------------|---------------------------------------------|-------------------------------------------|--------------------------------|
| AUC <sub>24h</sub> (ng•h/mL) | 4,815±1,374                                 | 4,012±1,123                               | 0.83 (0.75                     |
| C <sub>max</sub> (ng/mL)     | 500±148                                     | 448±141                                   | 0.90 (0.78                     |
| C <sub>min</sub> (ng/mL)     | 79±27                                       | 59±20                                     | 0.76 (0.66                     |

### 25-O-desacetyl rifabutin PK parameters (mean ± SD)

| 272±103   | 230±92.7  | 0.83 (0.74 |
|-----------|-----------|------------|
| 28.7±8.98 | 24.4±7.55 | 0.85 (0.72 |
| 4.07±2.38 | 3.22±1.88 | 0.78 (0.70 |
|           |           |            |



## 53-0.74)

n ratio rence) CI)

5-0.94)

3-1.03)

6-0.87)

ratio erence) CI)

1-0.92)

-1.00)

)-0.87)

#### Safety summary

- No serious AEs or grade 4 AEs were reported
- One volunteer discontinued the trial during the rifabutin alone ment due to atrial flutter (grade 1)
- One grade 3 event (increased serum amylase) during rifabutin alone treatment was reported, leading to premature
- · All other AEs were mild to moderate in severity
- The most frequent AEs were chromaturia, a known side effect of rifabutin use (seven volunteers, all associated with rifabutin) and headache (five volunteers), all of grade 1 severity
- No cases of rash were reported
- No consistent or relevant changes were found in laboratory or cardiovascular safety parameters, or physical exami

# Conclusions

- When co-administered with rifabutin 300mg gd, TMC125 exposure was decreased by 37% with similar decreases in  $C_{max}$  and  $C_{min}$ . This is comparable with the decrease in exposure to TMC125 when combined with boosted Pls, as observed in Phase II trials: these effects are not considered to be clinically relevant.
- The decrease of rifabutin and 25-O-desacetyl rifabutin exposures by 17% when co-administered with TMC125 are not clinically relevant
- Short-term co-administration of TMC125 with rifabutin in HIV-negative volunteers was generally safe and well tolerated.
- Rifabutin can be co-administered with TMC125 without dose adjustments. The effects of co-administered drugs should be taken into account.

# References

- . Vingerhoets |, et al. | Virol 2005;79:12773-82.
- 2. Nadler J, et al. 10th European AIDS Conference 2005 (Poster LBPS3/7A).
- 3. Cohen C, et al. 16th International AIDS Conference 2006 (Poster TUPE0061).
- 4. Di Perri G, et al. Expert Opin Drug Saf 2005;4:821-36.

# Acknowledgements

The authors would like to express their gratitude to the volunteers. We also acknowledge

- MP Bouche, [&] Pharmaceutical Research and Development, Beerse, Belgium
- D Hoelscher, PPD Development, Austin, Texas, USA.